Hierarchical Analysisd IC
Artwork with User-Defined
Rules

Louis K. Scheffer and Ronny Soetarman
Valid Logic Systems, Inc.

A n integrated circuit layout must meet two conditions
to produce working chips. First, thelayout must im-
plement theintended circuit. Second, thelayout must obey
desi gn rules, the physical requirements of the fabrication
process. Design rules specify the legal sizes of features on
the chip; violate these rulesand, depending on the magni-
tudeof that violation, the chip will either malfunctionor be
difficult to produce.

When integrated circuits were small, designers checked
by hand toensurethat circuitswerecorrect and designrules
not violated—an irksome and error-prone process. How-
ever, ascircuitsgrew insizeand complexity, hand checking
became less practical. By thistime, since | C layouts were
normally stored in machine-readableform, programswere
developed to check layouts against their constraints.

These design rule check (or DRC) programs test an IC
layout against a set of physical design rulesand report any
violations. Thedesigner corrects reported errors, repeating
DRC until thelayout iserror free. At thispoint, the design
can be fabricated. Extractors(component extraction pro-
grams) generate a component netlist, from an 1C layout,
whichiseither compared against thedesired netlist or made
theinput toasimulator. Thisguaranteesthat thelayout im-
plements the intended circuit. DRC programs and circuit
extractors are essential for the construction of VLS chips
containing tens of thousands of devices, for which hand
checking would be completely impractical.

66 0740-7475/86/0200-0066301.00 © 1986 IEEE IEEE DESIGN &TEST

Non-hierarar chical
analysis programs

Early DRC and extraction pro-
grams!+2 often had straightforward al-
gorithms whose time requirements
grew as O(N?), where Nrepresentsthe
number of features on the chip. As
chips grew larger, however, execution
times of the programs also grew. Im-
proved algorithms36 were devel oped.
In general, these had run timesin the
range of O(N'3). Since N was dou-
bling every year, a pacethat continues
to the current day, these algorithms
were replaced by ill more sophisti-
cated—and optimal —agorithmsthat
are O(NlogN)."® More recent work
has extended the O(NlogN) resultsto
circuit extraction and decreased mem-
ory requirement, and has provided
more function.1%! While chip szes
have increased 10,000-fold, almost
every paper in the field states that
small problems run in a few min-
utes—but the largest chips take a few
hours. Thishasheld truedueto acom-
bination of faster processors, larger
main memories, and better algo-
rithms.

Basics of hierarchical
analysis

Each of the above programs started
by expandinghierarchy { hereby creat-
ing a flat design. This diminated dl
hierarchical structure present in the
input, dramatically smplifying the
checking algorithms. However, dimi-
nating the hierarchy also introduced
problems: It was difficult to report er-
rorsintermsof the cdlsinwhichthey
occurred, and errorsin repeated cdls
were reported many times.

Since expanded designs contain
huge numbers of primitives, anayss
programs require large amounts of
main memory and disk space, and run
times are long. Small changes to in-
dividua cdls may require rerunning
the whole analysis, particularly in the
caeof circuit extraction, anceitisdif-
ficultto determinehow far thechanges
propagate.

Solutionsto these problems use the
hierarchical input structure to make

February 1986

analysis easier; two basic approaches
are common. The first!Z14 joins the
structure present in the input with
some method to take care of the cases
not readily amenable to hierarchica
analysis. The second approach im-
poses constraints upon the design so
that a hierarchical analysis is dways

possible, 1518

Each approach contains disadvan-
tages. Programs that can accept an ar-
bitrary hierarchy produce output that
is either non-hierarchical, or that usss
adifferent hierarchy than specified by
the user. Schemes that restrict the
hierarchy may not be acceptable if
those restrictions force major changes
in design style. For these schemes,
using designer-preferred hierarchiesis
extremely important.

Hierarchies preferred by designers
can only bedetermined by experiment.
Experiments described in a later sec-
tion of this paper measureanumber of
full-custom chips to determine which
cell/cell and which cell/primitive in-
teractions are present. The chips we
chose to measure were designed with-
out hierarchical tools, so the only con-
straintson the hierarchy wereimposed
by the designers desire to layout,
understand, and analyze the resulting
chip. These experiments show that
strict hierarchy (hierarchy with no
overlapat al) israrely observed; most
subcells have something overlapping
them. However, in most cases the
overlap does not change the subcdl's
function. And overlap that does
change the function of the subcell is
normally restricted to specific cases,
such as ROMs and PLAs.

Anideal analysistool would analyze
such ahierarchical design (asahuman
would) expanding where necessary
whiletreating the design hierarchically
insofar as possible, given the andysis
to be performed. The solution pro-
posad here dlows the user to specify
rulescontrollinghierarchical useinthe
analyss. These rules may differ for
each form of analysis, and may vary
based on the cdl being analyzed. This
approach alows sufficient flexibility
for analyses applying user-specified
hierarchies.

Examplesof problemsin
hierarchical IC analysis

The following two examples, using
the same layout and differing only in
theanalysisto be performed, illustrate
the complexity of hierarchical analy-
ss. Thefirst examplerequiresaccurate
overlap capacitances, implying that a.
cdl must bereanalyzedif aprimitiveis
added to it. The second example re-
quires only connectivity. In this case,
the analyssmust determineif theover-
lap changes the cdl's function. If it
does not, then the overlap is legdl;
otherwisg, it isin error.

Both examples use the simple cdl
representedin Figurel and designed to
be usedin asingle-layer metal environ-
ment. This cdl contains metal on an
internal signal, but also offers areas
where other metal lines may cross.
Since we are performing hierarchica
anayss, well assumethat the cell has
been andyzed in detail. We are pri-
marily concernedwith the usageof the
cel, and atypica cdl useisshownin

“Figure 1.

In the first example, the user wants
detailed circuit data including device
sze and capacitive loading informa-
tion. Among the parasitics necessary
for accurate results is capacitance
caused by overlapping layers, which
can only be obtained if the cdl is
reanayzed with the interconnections
added to it. Inthis case, the hierarchy
has been ignored since the unique pat-
tern of metal over the cdl's top has
converted the shared cdl to a unique
configuration. Note, however, that
hierarchical anaysiscan <till savecom-
putation time even if every cdl is
unique.1?

In the second example, the extrac-
tionis performed to obtain anetlist for
comparison with the desired netlist.
While the exact overlap capacitances
are unimportant in this case, it isim-
portant that the interconnect meta
connect to the appropriate pinsof the
device, and that any primitives over-

lapping thecdl do not impair thecdl's

functioning. In this example, the sub-
cdl can betreated the samein everyin-
stantiation— although the resulting

67

NN
AL

NN
NN

Figure 1. Cell and usein context.

circuit may not be the samefor every
instantiation since different instantia-
tions may have different pinstied to-
gether. Hierarchical circuit extraction
can work only if the subcell schematic
can be madet o represent the extracted
(flat) circuit by connectionsmadeonly
to the pins. Thus, an internal con-
nection that shorts together two
nodes is allowed, whereas a modifi-
cation dividing one nodeinto two is
forbidden.

These examplesshow that even with
one design, at least two different hier-
archy-handling methods are needed.
Inthefirstinstance, wearelooking for
grossinterferencewith the function of

thecdl. Any suchinterferenceisan er-
ror. In the second instance, any
primitiveoverlapping of thecdl forms
a unigue occurrence requiring com-
plete reanaysis. These are not limita-
tionsof the current programs; the user
requires two different results. A hu-
man faced with the same andysis
problems would be forced to treat
them in the same way.

Previouswork on
hierarchical analysis

Oneaf thefirst hierarchical analysis
techniques'? involves identifying (1)

all ingtancesof' primitivesoverlapping
cdls and (2) each instance of unique
cell/cell interaction. Only one of each
instanceis tested no matter how often
it occurs. This approach has several
advantages: It workson any hierarchy,
although it may not savetimeon anill-
structured example; it reduces the
number of repeated errorsin the out-
put; it reducesthe computational time
by eliminating redundant checking.

Mgjor disadvantagesare that the out-
put is not hierarchically structured,

and that it doesnot generalizeeasily to
circuit extraction. We have several ex-
amples of work accepting arbitrary
hierarchical input.13.14

Figure2. Cdl with abstract.

68

IEEE DESIGN &TEST

Although the exact constraints dif-
fer in ‘¢ hierarchical analysiswith con-
straints,”’ 51 ingenera each cdll hasa
boundary that primitives may not
overlap, and cdls may be of arbitrary
shape. The advantages are (1) linear
timeanaysis, (2) essy extensontocir-
cuit extraction, and (3) output in the
same hierarchica form asinput.

The main disadvantage is the re-
quirement that no primitives overlap
cels. This complete elimination of
overlapis dways possible, but experi-
mental evidence shows that designers
do not currently follow this design
style. Furthermore, recent technical
advances (such asmultiplelayersof in-
terconnect) make it inconvenient to
follow these restrictions. One im-
plementation of this form of hierar-
chical analysis!® avoids some of these
problemsby introducingthereanaysis
of cdlsoverlapped by primitives. This
works, and is required in some cases
(such as cross-coupling capacitance)
but is unnecessarily dow when we
desireinterconnectionsonly.

Athirdformd hierarchical andysis
extendstheideadf a boundary to the
ideaof one boundary per layer (cdled
a protection frame).2® This resembles
the previous approach except that the
boundary is computed on a layer-by-
layer basis, providing more flexibility
for primitivesoverlgppingthe edges of
cdls. The main disadvantage hereis
thedifficultyin handling strong layer-
to-layer interactions. For example, if

cross-coupling interactions must be
consdered then protection frames are
insufficient. Furthermore, in atypical
NMOS process it is insufficient that
poly not violate the poly protection
frame—it must also have a certain
clearance from the diffusion protec-
tion frame.

A solution tothese
problems

An abstract of a cdl isany Smpler
representation of the cdl that can re-
placethecdlin ahierarchica andyss.
The exact contents of an abstract de-
pend on the analysisbeing performed;
for circuit extraction, the abstract of a
cdl might consist of theareaoccupied
by the cdl and the pins of that cdll.
Protection frames, DRC ""donuts,""
and functional models are other ab-
stracts built for particular analyses.

Most analysis (electrica and physi-
cal) can be performed hierarchicaly
withthe proper form of abstract.'” In
general, thetechniqueinvolvesfinding
dl errors that can be found without
knowing the context of the cdl—and
thenrecordingin theabstractal infor-
mationabout partsof thecdl that can-
not be checked until the context is
known.

Consider the following two exam-
plesof different abstractsfor different
anayses. In thefirst example, assum-
ingthat primitivesdo not overlapcels,
the abstract of a cell is the region

within some distance (D) of the edge,
whereD isthelargest design rule. For
the previous example, the abstract
might look like Figure 2. Note that
whentheabstract assumptionsarevio-
lated—when primitivesare run over a
cdl —then the cdl must bereanayzed.

Another form of abstract might be
called the " occupied area and pins'
model.?! Inthiscase, theabstract con-
dgs of a region occupied by the cdl
and the pins of the cdl, as shown in
Figure 3. This abstract is useful for
computing connectivity in a process
where second-layer metal often ovér-
lapscdls. Here, if aprimitiveoverlaps
the corresponding occupied layer of
the subcell, then an error is declared
and the user must fix it. No automatic
reanalysisis performed.

In order to accommodatethesetwo
formsof hierarchicalandyss, theuser
must specify how the abstract isto be
created, and must also state under
what conditionsit is correct to usethe
abstract in place of the full cdl and
what must be doneif theseconditions
arenot met. If theabstractisnotvalid,
theadternativesareto reanayzethecdll
or to report it as an error and let the
user fix it.

The abstract creation can be speci-
fied with the same commands used in
the conventional DRC. The Figure 2
abstract was created by saving al
material within some distance (D) of
theboundary. Thiscanbeexpressedin
theoperationsAND, OR, ANDNOT,

Figure 3. Occupied area and pinsabstract.

February 1986

69

EXPAND, and CONTRACT as ap-
pliedto polygons. (Theaccompanying
summary box explains these opera-
tions.) Rulesfor this operation are.

abstract = primitivesAND
(boundary ANDNOT
(boundary CONTRACT D)).

In addition, the user must specify
the rules determining which parts of
el ectricallyconductivepolygonswithin
thecell aretreated aspins. Thismay be
done by proximity to the boundary (as
above) or by establishing a separate
layer for the purpose. For example, if
we have a define—pins layer and a
metal —1 layer, then the pins on this
layer aredefined as

pins = metal—1 AND define—pins.

Determining whether the abstract
can be used in placecof thecdl may in-
volve many complex rules. Theruleis
simplewhen overlap capacitanceisim-
portant; if any primitive overlaps a
cell, then the abstract cannot be used
and the cdl must be reandyzed with
the primitive added. When checking
connectivity, however, the situation is
more complex. For example, the poly
layer in an NMOS process may over-
lap a cel provided that (1) it doesn't
get within a certain distance of any
poly inthecdl; (2)it doesn't get within
any (different) distancedf diffusionin
the cell; and (3) it doesn't get within
any (dtill different)distanceof contacts
in the cdl. Thereare amilar rules for
al other layers.

We can check theserulesin at least
two ways: by recordingtheareathat is
used by thesubcell, or by recordingthe
area that must be avoided by the par-
ent cel primitives. For example, sup-
pose that the rdevant rules are 2
microns poly/poly spacing, 1 micron
poly/diffusion spacing, and 1.5 mi-
crons poly/contact spacing. We can
codetheserulesin two different ways

poly > 2 microns from subcell
poly
poly > 1 micron from subcell
diffusion
poly > 1.5 microns from subcell
contact

70

or, aternatively, for each cell compute
the poly__keepout layer as

poly—keepout = (poly EXPAND 2)
OR
(diffusionEXPAND 1) OR
(contact EXPAND 1.5)

poly = 0 micronsfrom poly-
keepout.

These methods are exactly equiva
lent only if thesamemetricis used for
distance measuring and the ex-
pand/contract operation. Typicaly,
this is not the case since different
metricsare used for efficiency; thedif-
ferences, however, are small.

In the above example, we see two
separate problems: (1) computing
the layersthat represent a cell at the
next level of the hierarchy, and (2)
stating rules that use these abstract
representations.

We can express these rules in the
DRC command file as follows: For
every user-definedlayer, wecreatetwo
other layers—the " occupied’” area of
thesubcell (computed when the subcelt
was anayzed), and the " occupied™
area of the current cdl (computed as
weDRCthecdl). In theexamplesthat
follow, if poly is the user-defined
layer, then poly[occupied] referstothe
subcell areaoccupiedby polyif used as
asource of data. If used as a destina-
tion, poly refersto the occupied area
of the cdl under consideration. In
these examples, we expand and then
contract layers by an amount that
mergespolygonstoo closdly alignedto
alow any routing between them,
thereby reducing the amount of data
that must be handled at the next layer
of thehierarchy: %

compute own occupied region:
poly[occupied] = (poly EXPAND 4)
CONTRACT 4
contactfoccupied] = (contact
EXPAND 5) CONTRACT 5
diffusion[occupied] = (diffusion
EXPAND 5) CONTRACT 5
check spacing of poly in cdl to poly
of subcdls:
spacing poly poly[occupied] >2.0
spacing poly diffusion{occupied] >1.0
spacing poly contact[occupied] >1.5

or, if the user wishes to express the
rulesin termsof keepout regions,

degjine the region wherepoly isnot
legal:

poly[keepout] =
(poly EXPAND 2.0) OR
(contact EXPAND 1.5) OR
(diffuson EXPAND 1)

Checkpoly in cell versuskeepout of
subcdlls:

spacing poly polyikeepout] >0.0

As described earlier, both the rules
and the abstracts differ for different
analyses. Each form of andysishasa
user-supplied name associated withiit.
The DRC program keeps several dif-
ferent abstract representations for
each cell—one for each typeof analy-
ds—dlowing any analysis of any cdl
at any time.

Error and circuit output

Error reportingis morecomplexfor
a hierarchical andysistool than for a
flat analysis tool; the use of the ab-
stract in placeof the complete subcell
may cause complications. If the " do-
nut'" abstract for acdl is used, for ex-
ample, the abstract will contain pieces
of geometry not meetingthe minimum
width rules. The program must ex-
amine the location of each error to
determinewhether itisreal and should
bereported, or whether itisan abstrac-
tion processartifact and should beig-
nored—not adifficult task provided the
width of the ""donut™ is greater than
the largest rule to be checked. If so,
each errorisreportedonly once, noer-
rorsare missed, and no falseerrorsare
generated.!”

Subcell reanalysis also creates po-
tential confusion. If asubcell must be
reanalyzed because a primitive has
been placed over it, then any discov-
ered errors must be reported in the
parent and not the subcell. This will
generate no falseerrors, provided that
the subcell had no errors when ana-
lyzed by itself.

Hierarchical circuit extraction al-
ways generates hierarchical netlists.
Theschematicfor each cdl isdescribed
in terms of primitive components,
such ascapacitorsand transistors, and

IEEE DESIGN &TEST

referencesto subcells. If another tool
requires a fully expanded netlist, then
aseparateprogram (anetlist compiler)
must be used to generate the fully ex-
panded list. If subcells havebeen rean-
alyzed because they had primitives
over them, then multiple netlists exist
for that cdl, one for each different
overlapping geometry. The netlist of
the parent cdl explicitly refersto these
subcell versons. Such an approach
dlows most programs that read the
hierarchical netlists to ignore the dif-
ference between cdls created by the
user, and cdls created by reanaysis.
The dternative—storing only the dif-
ferencesin the netlists for the different
versons—would save storage space,
but at the cost of added complexity.

M odificationsto DRC

We added the features of the
previoussectionto our exigting hierar-
chical DRC/EXTRACT program.
Designers then used the program to
perform analyses for many different
rule sets and processes—processesin-
cluding NMOS, CMOS, and bipolar.
The analyses employed ssimple DRC
rules, complex DRC rules, continuity-
only extraction, and full-parameter
extraction.

Most usersrun asmplehierarchical
continuity extraction,followed by net-
list comparison, until they achievethe
correct circuit topology. Then, they
run amore detailed st of rulesto ob-
tainmoreaccurateparasitics. Somede-
signers, particularly those designing
analog circuits, need full cross-cou-
pling capacitances. They must use re-
analysis to obtain these capacitances.
Other designers, primarily thosework-
ing ondigital circuits, can approximate
the cross-coupling capacitances with
lumped capacitances to ground—an
approach not requiring reanayss of
cdls

Both full extraction (withinternodal
capacitors) and continuity-only ex-
traction can be coded by one program
using different rules. To extract over-
lap capacitances, we must retain the
ability to reanayze when overlapping
occurs. If reandyss is dways used,
however, many different versons of

February 1986

simplecdlsarecreated (particularlyin
a process with more than onelayer of
metalization). We have seen up to 40
versionsof asinglecdl. If only conti-
nuity and lumped capacitance to
ground arerequired, then reanalysisis
avoided by use of keepout layers and
pins.

By using keepouts and pins, 851095
percent of the cdlsin atypica design
can beanalyzedhierarchicalyfor both
designrulecheckingand circuit extrac-
tion. The major exceptionsare ROMs
and PLAswhereusers,intendingtoal-
ter thesubcell’s function, havedeliber-
ately placed primitivesinside subcells.
Theseviolations, athoughbadin prin-
ciple, can beeasly handled in practice.
Small ROMs and PLASs can be han-
dled by flatteningtheir hierarchy;large
ROMs and PLASs, normally machine
generated, are already handled as spe-
cial cases. Usudly, we don't need cir-
Cuit extraction sncethesameprogram
generating the PL A generatesthesche-
matic. DRC of thefinal programmed
cdl is not necessary except, perhaps,
for a border around the edge. The
border, another form of abstract, can
begeneratedby arulefilethat only ap-
pliesto PLAS.

ROMsand PLAsare handled auto-
matically by specifying, in the com-
mand file, that certain cdls are to be
analyzed with different rules. For ex-
ample, each cdl whose nhame begins
with ““PLA”’ can beflattened,whileal
other cellscan be treated hierarchical-
ly. Once ROMsand PLAsaretreated
separately, the percentageof instances
that cannot be handled hierarchically
drops to roughly three percent (for a
design that was not built with hierar-
chical analysis tools in mind). With
new designs and cooperative design-
ers, the percentageof cdlsthat cannot
be hierarchically analyzed drops to
zero.

M easur ementsof
custom chips

Severa questionsabout hierarchical
analysis techniques can only be an-
swered by experiment. The most in-
teresting of these questions is: What
percentage of analyses performed on

real designs can be performed hierar-
chicaly? This is difficult to quantify
for severa reasons. Firgt, if the analy-
95 method needs constraints, then the
percentagewill depend on the willing-
ness of designersto follow those con-
straints. Furthermore, the analyses
requested depend heavily upon what
other toolsare available. If the analog
simulation programs and network
comparison programs only work on
flat input, for example, then the de-
signer has no use for hierarchical cir-
cuit extraction.

Nonetheless, the hierarchicha re-
strictionsthat designerswill accept can
be edtimated by examining chips de-
dgned using only flat andlyss tools.
Designers using these tools employ
hierarchy only as an aid to building
and understanding these circuits—not
atrue test of designer wantssince, by
analogy with programming, when
hierarchical toolsare availabledesign-
ers will usethem. However, the struc-
turedesignersimposeprovidesalower
bound tothestructurethey will accept.

Tablellistsdtatisticsfrom twolarge
customchips. OneisBerkeley's RISC-
II chip; theother isthe 9852 CRT con-
troller from Advanced Micro Devices.
Both were designed with flat analysis
toolsand hierarchical editors. Bothare
built in an NMOS process. Table 1
reportscdl usestwoways First, an ar-
ray of cdlsiscounted asonereference;
second, an array of Ncellsistreated as
N separate subcells.

Theincentivefor hierarchical DRC
is clear from Table 1; if we anadyze
each cdl once in the RISC-II design,
we analyzeroughly 24,000 trapezoids.
If we analyzethe flat design, we need
to analyzeroughly 461,000 trapezoids.
Moreover, DRC agorithmsare worse
than linear so the differenceisfurther
magnified. On the other hand, when a
cdl isanayzed hierarchicallyinforma-
tion from subcells must be included
and the abstract must be generated.
This decreases the advantage of the
hierarchical approach, but reductions
of between400to 1000 percentin CPU
timeremain typical.

The performancecf thehierarchica
DRC/EXTRACT depends dramati-
cally on the required reanalysis. If no

71

Legal
spacing=3

llegal llegal

spacing=2 spacdng=2.83

—
(@) Examples of spacingtest 1 micron
Legdl llegal
width=3 wicth =2
—_— —
1 micron
(b) Example of width test
Legdl llegal

(©) BExampes of endosure test

Figures la-c. Basic measurements
performed by DRC.

Basic Geometrical Operations for Design Rule Checking

Design rule checking is built around two basic operations: measuring
geometry, and creating new geometry as a function of existing shapes.
Operations define which regionsto test, and measurementsfindthe errors
which are reported to the user. Measurements are performed between all
edges of a given type. The basic tests are illustrated in Figures 1a-c.

Geometrical operations isolate features to be tested. A nonimplanted
transistor, for example, occurs only where polysilicon and diffusion
coincide and the implant mask is not present. In this case, the logical
operations can generate geometry corresponding to these transistors
only. For operations on geometry, each region on an IC mask can be
regarded as a set of points in the Cartesian plane, allowing operations of
AND, OR, ANDNOT, and XOR to be performed pointwise. Figure 2 shows
the results of these operations on two rectangles.

The operations EXPAND and CONTRACT work on a single layer.
EXPAND makes all polygons on a layer bigger without affecting their
position. CONTRACT makes them smaller. EXPAND is performed by
including all points within a given distance into the existing set, possibly
causing adjacent figures to merge and holes inside figures to disappear.
CONTRACT is performed by deleting from a figure all points within a
specified distance of any point not in the figure. CONTRACT can cause
single figures to break into multiple figures, and can cause figures to
disappear entirely.

The exact results of EXPAND and CONTRACT depend on the metric
used. The Euclidean metric is perhaps the most natural, but a square
corner will turninto anarc if expanded using the Euclideanmetric. Arcs are
more difficult both to deal with computationally and to reproduce with
mask-making machines, most of which are based on rectangles or
trapezoids; approximating circular arcs with these figures increases the
cost manyfold.

By using a different metric, square corners will remain square — useful
for making masks, but resulting in corners being overexpanded. A
compromise, such as the octagonal metric, reduces the maximum errorto
eight percentwhile adding only one side to an original square. Figures 3a-b
show the results of EXPAND and CONTRACT on several images, using
different metrics.

aANDb

aORb aANDNOT b

aX0Rb

Figure 2. Logical operations on two rectangles.

reanalysis is required, performing a
15-rule circuit extraction onthe RISC-
II chip takes about 6000 CP U seconds.
With a set of rules that forces reanaly-
sis of every instance of every cell, the
same analysis takes roughly 40,000
CPU seconds (for an8 MHzMotorola
68000).

Table 2 enumerates cell use N the
hierarchy. Each cell in the design is
looked at once (no matter how many

72

times it is used) and the subcells used
are counted. This corresponds to the
number of subcell references a hierar-
chical analysis program must analyze.
For the first measurement(**with over-
lap') we buildanabstract for eachcell
by expanding and then contracting
each layer, and by removing holes. I f
any parent cell geometry overlaps this
region, the cell is counted N this

group.

Next, welook for overlaps changing
the subcell's circuit. Since all the chips
considered here are poly-gate MOS,
we can do this by searching for poly
overlapping the diffusion of subcells
or vice versa.

Finally, we assume that ROMs and
PLAs will be analyzed with different
rules as discussed in the previous sec-
tion. Therefore, werecalculatethe per-

IEEE DESIGN & TEST

(@)

Expand —2 Expand —1

.

(b)

Figure 3a-b. Expansion and contraction with different metrics.

centages excluding these cdls—abdled
“’non-ROM circuit mods,"" thesecdls
cannot be analyzed hierarchically for
circuit extraction.

The results clearly show that while
designers often put primitives over
cdlls, they generdly changethecircuits
of subcells only in certainwell-defined
cases. Except for ROMs and PLAs,
just a small percentage of cdl refer-

February 1986

ences changethe subcell circuitry. Ex-
amination of these remaining cases
showsthat, if necessary,they could be
done as eadily without circuit modifi-
cation. The tools used in developing
these examples provided no such in-
centive. It's very encouraging that
only a small number of cellsviolate
hierarchical constraints, even in the
absence of explicit rules forbidding
these violations.

Table 1. Cusom chip atigtics.
dip RISC-II 80R2
Eah odl once
rumbe o odls K I 374
rferences(no arays) 1380 34
references (With arrays) 226 10015
trgpezoicsind odls 236 173717
Rl hierarchy:
refarences (expanded) 100 430
references (With arays) 11367 20693

o trapezoics 4680537 1015479

L.

Table 2. M odification of subcdls.
RCI &2
refarances 1330 34
with ovalgp 87.9% 945%
with drout nods 11.6% 17.8%
ROMs, PLAs 10.0% 13.4%
non-ROM draut nocs 1.54% 4.32%
L]

O ur experiments show hierar-
chical andysisof 1C layoutsto
be practical —providing the perfor-
mance benefits of hierarchical analy-
§s, improving error reporting, and
dlowing the use of circuit tools need-
ing hierarchical input—without re-
quiring major changesin layout de-
sign. However, different approaches
to hierarchical analysis are required
depending on analyses requested by
designers. Somerequestsdemand sub-
cdl reanalysisfor sufficient accuracy;
for other requests, thisreanalysisisun-
necessary and time-consuming.

With the addition of four new fea-
tures, a hierarchica DRC and circuit
extraction program can handle al
commonly required formsof anaysis.
These features are: user-defined ab-
stract generation, userdefined rules
stating when the abstractisvalid, user
specification of what to dowithanin-
valid abstract in a given context, and
user specificationof analysis form de-
pending on the cdl type.

Thereare severa advantagesto this
program. All commonlayout andysis
operations can be performed with
user-specified hierarchy. The user, not

73

theprogram, makestradeoffsbetween
the performance advantages of pre-
serving the hierarchy and additional
operations (such as detection of over-
lap capacitance) possble with explicit
subcell reandysis. In particular, this
program handles multiple intercon-
nect layers and cdls with internal ter-
minals, these are andyzed using the
user-specified hierarchy and without
subcell reanalysis. Thesameprogram,
with different rules, can also handle
problems (such as the calculation of
overlap capacitance) requiring subcell
reanayss.

Hierarchical anadysistoolsresemble
structured programmingtools. All are
designed with consideration given to
exiging applications, but the real test
comes as users grow familiar with the
tools and design new applications. In
each case, there are many possible
tradeoffsbetween user constraintsand
eae of analyss. In each case, com-
plexity limits the sze of practical
design. As has proven true with pro-
gramming tools, human understand-
ing of both thelayoutsand the results
of the analysis tools probably deter-
mines the proper tradeoffs for IC
layouts. Thus, the desgns and tools
most easly understood by human
designerspresent apromisingtopicfor
future research. &

Acknowledgments

Wewouldliketothank AdvancedMicro
Devicesfor providingexamplesof commer-
cid chips. Commentary by |EEE referees
was aso helpful, and is appreciated.

Refer ences

1. M. Yamin, "XYTOLR—A Com-
puter Program for Integrated Circuit
Mask Design Checkout,” Bell
SystemTech. J., Val. 51, No. 7, Sept.
1972, pp. 1581-1593.

2. B. Preas, B. Lindsay,and C. Gwyn,
" Automatic Circuit Analysis Based
on Mask Information," Proc. 13th
Design Automation Conf., San Fran-
cisco, Calif., June1976, pp. 309-317.

3. H.S. Baird, ""Fast Algorithms for
LSl Artwork Anaysis' Proc. 14th
Design Automation Conf., New
Orleans, La., Junel977, pp. 303-311.

4. D. Alexander, "*A Technology In-
dependent Design Rule Checker,™
Proc. 3rd USA-Japan Computer

74

10.

11.

13.

14.

15.

16.

17.

Conf., San Francisco, Calif., Oct.
1978, pp. 412-416.

K. Yoshidaet a., "* A Layout System
for Large Scaelntegrated Circuits,"
Proc. 14th Design Automation
Conf.,New Orleans, La, Junel977,
pp. 322-330.

P. Wilcox, H. Rombeek, and D.M.
Caughey, '"Design Verification
Based on One-Dimensional Scans,"*
Proc. 15th Design Automation
Conf.,Las Vegas, Nev., June 1978,
pp. 285-289.

U. Lauther, ""An O(N log N)
Algorithmfor Boolean Mask Opera-
tions,” Proc. 18th Annual Desgn
Automation Conf., Nashville,
Tenn., June 1981, pp. 555-562.

J. Bentley and D. Wood, "*An Op-
timal Worst-case Algorithm for
Reporting Intersections of Rect-
angles,” |IEEE Trans. Computers,
Vol. C-29, July 1980, pp. 571-577.

J. Bentley and T. Otmann, "The
Complexity of Manipulating Hierar-
chically Defined Sets of Rectangles,"
Tech. Report, Carnegie-Mellon Uni-
versity, 1981.

T. Szymanski and C. Van Wyk,
'* Space-Efficient Algorithms for
VLS Artwork Analysis,"* Proc. 20th
Desgn Automation Conf., Miami,
Fla,, June 1983, pp. 734-739.

P. Chapman and K. Clark, ""The
Scan-LineApproach to Design Rules
Checking: Computational Experi-
ences,"" Proc. 21st Design Automa-
tion Conf., Albuquerque, N.M.,
June 1984, pp. 235-241.

T. Whitney, ""Description of the
Hierarchical Design Rule Filter,"
SSP file #4027, Silicon Structures
Project, Californialnst. Technology,
Pasadena, Calif., Oct. 1980.

M. Newell and D. Fitzpatrick, ""Ex-
ploitingStructurein Integrated Circuit
Design Andysis" Proc. Conf. Ad-
vanced Ressarch VLS, MIT, Cam-
bridge, Mass,, 1982, pp. 84-92.

S. Johnson, "*Hierarchical Design
Veification Based on Rectangles,”
Proc. Conf. Advanced Research
VLY, MIT, Cambridge, Mass., 1982,
pp- 97-100.

J. Rowson, ""Understanding Hierar-
chical Design,” PhD dissertation,
CdliforniaInst. Technology, 1980.

L. Scheffer, " A Methodology for Im-
proved Verification of VLS| Designs
without Lossof Area,”* Caltech Conf.
VLSI. Pasadena, Calif., 1981.

L. Scheffer, "*The Use of Strict
Hierarchy for Verification of In-

tegrated Circuits," PhD dissertation,
Stanford Univerdity, 1984. (Available
asatech. report from: Integrated Cir-
cuits Laboratory, Stanford Universi-
ty, Stanford, CA 94305.)

S.N. Stevens and S.P. McCabe,
"IDS—A Systemfor Fast, Hierarchi-
cal Design of Handcrafteci VLS Cir-
cuits," |EEE 1984 Custom Integrated
CircuitsConf., Rochester, N.Y., May
1984, pp. 107-111.

“DRC/EXTRACT Manud," Vdid
Logic Systems, Inc., 2820 Orchard
Pkwy, San Jose, Calif., Oct. 1983.

K.H. Kdler, A.R. Newton, and S.
Ellis, "*A Symbolic Design System for
Integrated Circuits,” Proc. 19th
Design Automation Conf., Las
Vegas, Nev., June 1982, pp. 460- 466.

"'Electronic Design Interchange For-
mat Verson 10 0,”’ The EDIF Users
Group, Desgn Automation Dept.,
Texas Instruments, P.O. Box 225474,
MS3668, Dallas, Tex. 75265.

18.

10.

21

LouisK. Scheffer is an engineer at Vdid
L ogic Systems, working on hardware and
software to support VLS layout. Before
joining Valid, he worked for Hewlett-
Packard as an | C designer and layout tool
developer. Herecelved both hisMSfrom
theCalifornialnstituteof Technologyand
his PhD from Stanford in electrical engi-
neering.

Ronny Soetarman isasoftwareengineer at
Vdid Logic Systems, working on the
DRC/extract program. He received his
BS in mechanical engineering from the
University of Californiaat SantaBarbara,
and histwo MS degreesin mechanical en-
gineeringand computer engineering from
Stanford University.

The authors address is Vaid Logic
Systems, Inc., 2820 Orchard Parkway,
San Jose, CA 95134.

IEEEDESIGN &TEST

