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n integrated circuit layout must meet two conditions 
to produce working chips. First, the layout must im- 

plement the intended circuit. Second, the layout must obey 
design rules, the physical requirements of the fabrication 
process. Design rules specify the legal sizes of features on 
the chip; violate these rules and, depending on the magni- 
tude of that violation, the chip will either malfunction or be 
difficult to produce. 

When integrated circuits were small, designers checked 
by hand to ensure that circuits were correct and design rules 
not violated-an irksome and error-prone process. How- 
ever, as circuits grew in size and complexity, hand checking 
became less practical. By this time, since IC Iayouts were 
normally stored in machine-readable form, programs were 
developed to check layouts against their constraints. 

These design rule check (or DRC) programs test an IC 
layout against a set of physical design rules and report any 
violations. The designer corrects reported errors, repeating 
DRC until the layout is error free. At this point, the design 
can be fabricated. Extractors (component extraction pro- 
grams) generate a component netlist, from an IC layout, 
which is either compared against the desired netlist or made 
the input to  a simulator. This guarantees that the layout im- 
plements the intended circuit. DRC programs and circuit 
extractors are essential for the construction of VLSI chips 
containing tens of thousands of devices, for which hand 
checking would be completely impractical. 
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Non-hierararchical 
analysis programs 

Early DRC and extraction pro- 
grams1p2 often had straightforward al- 
gorithms whose time requirements 
grew as O(W), where Nrepresents the 
number of features on the chip. As 
chips grew larger, however, execution 
times of the programs also grew. Im- 
proved  algorithm^^-^ were developed. 
In general, these had run times in the 
range of O(N1.5). Since N was dou- 
bling every year, a pace that continues 
to the current day, these algorithms 
were replaced by still more sophisti- 
cated-and optimal-algorithms that 
are O ( M O ~ N ) . ~ - ~  More recent work 
has extended the O(MogN) results to 
circuit extraction and decreased mem- 
ory requirement, and has provided 
more function.lOJ1 While chip sizes 
have increased 10,000-fold, almost 
every paper in the field states that 
small problems run in a few min- 
utes-but the largest chips take a few 
hours. This has held true due to a com- 
bination of faster processors, larger 
main memories, and better algo- 
rithms. 

Basics of hierarchical 
analysis 

Each of the above programs started 
by expanding hierarchy, {hereby creat- 
ing a flat design. This eliminated all 
hierarchical structure present in the 
input, dramatically simplifying the 
checking algorithms. However, elimi- 
nating the hierarchy also introduced 
problems: It was difficult to report er- 
rors in terms of the cells in which they 
occurred, and errors in repeated cells 
were reported many times. 

Since expanded designs contain 
huge numbers of primitives, analysis 
programs require large amounts of 
main memory and disk space, and run 
times are long. Small changes to in- 
dividual cells may require rerunning 
the whole analysis, particularly in the 
case of circuit extraction, since it is dif- 
ficult to determine how far the changes 
propagate. 

Solutions to these problems use the 
hierarchical input structure to make 
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analysis easier; two basic approaches 
are common. The firstI2-l4 joins the 
structure present in the input with 
some method to take care of the cases 
not readily amenable to hierarchical 
analysis. The second approach im- 
poses constraints upon the design so 
that a hierarchical analysis is always 
possible. I5-l8 

Each approach contains disadvan- 
tages. Programs that can accept an ar- 
bitrary hierarchy produce output that 
is either non-hierarchical, or that uses 
a different hierarchy than specified by 
the user. Schemes that restrict the 
hierarchy may not be acceptable if 
those restrictions force major changes 
in design style. For these schemes, 
using designer-preferred hierarchies is 
extremely important. 

Hierarchies preferred by designers 
can only be determined by experiment. 
Experiments described in a later sec- 
tion of this paper measure a number of 
full-custom chips to determine which 
cell/cell and which cell/primitive in- 
teractions are present. The chips we 
chose to measure were designed with- 
out hierarchical tools, so the only con- 
straints on the hierarchy were imposed 
by the designers' desire to layout, 
understand, and analyze the resulting 
chip. These experiments show that 
strict hierarchy (hierarchy with no 
overlap at all) is rarely observed; most 
subcells have something overlapping 
them. However, in most cases the 
overlap does not change the subcell's 
function. And overlap that does 
change the function of the subcell is 
normally restricted to specific cases, 
such as ROMs and PLAs. 

An ideal analysis tool would analyze 
such a hierarchical design (as a human 
would) expanding where necessary 
while treating the design hierarchically 
insofar as possible, given the analysis 
to be performed. The solution pro- 
posed here allows the user to specify 
rules controlling hierarchical use in the 
analysis. These rules may differ for 
each form of analysis, and may vary 
based on the cell being analyzed. This 
approach allows sufficient flexibility 
for analyses applying user-specified 
hierarchies. 

Examples of problems in 
hierarchical IC analysis 

The following two examples, using 
the same layout and differing only in 
the analysis to be performed, illustrate 
the complexity of hierarchical analy- 
sis. The first example requires accurate 
overlap capacitances, implying that a. 
cell must be reanalyzed if a primitive is 
added to it. The second example re- 
quires only connectivity. In this case, 
the analysis must determine if the over- 
lap changes the cell's function. If it 
does not, then the overlap is legal; 
otherwise, it is in error. 

Both examples use the simple cell 
represented in Figure 1 and designed to 
be used in a single-layer metal environ- 
ment. This cell contains metal on an 
internal signal, but also offers areas 
where other metal lines may cross. 
Since we are performing hierarchical 
analysis, we'll assume that the cell has 
been analyzed in detail. We are pri- 
marily concerned with the usage of the 
cell, and a typical cell use is shown in 
Figure 1. 

In the first example, the user wants 
detailed circuit data including device 
size and capacitive loading informa- 
tion. Among the parasitics necessary 
for accurate results is capacitance 
caused by overlapping layers, which 
can only be obtained if the cell is 
reanalyzed with the interconnections 
added to it. In this case, the hierarchy 
has been ignored since the unique pat- 
tern of metal over the cell's top has 
converted the shared cell to a unique 
configuration. Note, however, that 
hierarchical analysis can still save com- 
putation time even if every cell is 
unique. 17 

In the second example, the extrac- 
tion is performed to obtain a netlist for 
comparison with the desired netlist. 
While the exact overlap capacitances 
are unimportant in this case, it is im- 
portant that the interconnect metal 
connect to the appropriate pins of the 
device, and that any primitives over- 
lapping the cell do not impair the cell's 
functioning. In this example, the sub- 
cell can be treated the same in every in- 
stantiation-although the resulting 



Figure 1. Cell and use in context. 

circuit may not be the same for every 
instantiation since different instantia- 
tions may have different pins tied to- 
gether. Hierarchical circuit extraction 
can work only if the subcell schematic 
can be made to  represent the extracted 
(flat) circuit by connections made only 
to the pins. Thus, an internal con- 
nection that shorts together two 
nodes is allowed, whereas a modifi- 
cation dividing one node into two is 
forbidden. 

These examples show that even with 
one design, at least two different hier- 
archy-handling methods are needed. 
In the first instance, we are looking for 
gross interference with the function of 

the cell. Any such interference is an er- 
ror. In the second instance, any 
primitive overlapping of the cell forms 
a unique occurrence requiring com- 
plete reanalysis. These are not limita- 
tions of the current programs; the user 
requires two different results. A hu- 
man faced with the same analysis 
problems would be forced to treat 
them in the same way. 

Previous work on 
hierarchical analysis 

One of the first hierarchical analysis 
techniques l2 involves identifying (1) 

all instances of' primitives overlapping 
cells and (2) each instance of unique 
cell/cell interaction. Only one of each 
instance is tested no matter how often 
it occurs. This approach has several 
advantages: It works on any hierarchy, 
although it may not save time on an ill- 
structured example; it reduces the 
number of repeated errors in the out- 
put; it reduces the computational time 
by eliminating redundant checking. 
Major disadvantages are that the out- 
put is not hierarchically structured, 
and that it does not generalize easily to 
circuit extraction. We have several ex- 
amples of work accepting arbitrary 
hierarchical input. 13,l4 

Figure 2. Cell with abstract. 
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Although the exact constraints dif- 
fer in " hierarchical analysis with con- 
straints,"15-l9 in general each cell has a 
boundary that primitives may not 
overlap, and cells may be of arbitrary 
shape. The advantages are (1) linear 
time analysis, (2) easy extension to cir- 
cuit extraction, and (3) output in the 
same hierarchical form as input. 

The main disadvantage is the re- 
quirement that no primitives overlap 
cells. This complete elimination of 
overlap is always possible, but experi- 
mental evidence shows that designers 
do not currently follow this design 
style. Furthermore, recent technical 
advances (such as multiple layers of in- 
terconnect) make it inconvenient to 
follow these restrictions. One im- 
plementation of this form of hierar- 
chical analysisIg avoids some of these 
problems by introducing the reanalysis 
of cells overlapped by primitives. This 
works, and is required in some cases 
(such as cross-coupling capacitance) 
but is unnecessarily slow when we 
desire interconnections only. 

A third form of hierarchical analysis 
extends the idea of a boundary to the 
idea of one boundary per layer (called 
a protection frame).20 This resembles 
the previous approach except that the 
boundary is computed on a layer-by- 
layer basis, providing more flexibility 
for primitives overlapping the edges of 
cells. The main disadvbtage here is 
the difficulty in handling strong layer- 
to-layer interactions. For example, if 

cross-coupling interactions must be 
considered then protection frames are 
insufficient. Furthermore, in a typical 
NMOS process it is insufficient that 
poly not violate the poly protection 
frame-it must also have a certain 
clearance from the diffusion protec- 
tion frame. 

A solution to these 
problems 

An abstract of a cell is any simpler 
representation of the cell that can re- 
place the cell in a hierarchical analysis. 
The exact contents of an abstract de- 
pend on the analysis being performed; 
for circuit extraction, the abstract of a 
cell might consist of the area occupied 
by the cell and the pins of that cell. 
Protection frames, DRC "donuts," 
and functional models are other ab- 
stracts built for padcular analyses. 

Most analysis (electrical and physi- 
cal) can be performed hierarchically 
with the proper form of abstract. l7 In 
general, the technique involves finding 
all errors that can be found without 
knowing the context of the cell-and 
then recording in the abstract all infor- 
mation about parts of the cell that can- 
not be checked until the context is 
known. 

Consider the following two exam- 
ples of different abstracts for different 
analyses. In the first example, assum- 
ing that primitives do not overlap cells, 
the abstract of a cell is the region 

within some distance (D) of the edge, 
where D is the largest design rule. For 
the previous example, the abstract 
might look like Figure 2. Note that 
when the abstract assumptions are vio- 
lated-when primitives are run over a 
cell-then the cell must be reanalyzed. 

Another form of abstract might be 
called the "occupied area and pins" 
model.21 In this case, the abstract con- 
sists of a region occupied by the cell 
and the pins of the cell, as shown in 
Figure 3. This abstract is useful for 
computing connectivity in a process 
where second-layer metal often ovkr- 
laps cells. Here, if a primitive overlaps 
the corresponding occupied layer of 
the subcell, then an error is declared 
and the user must fix it. No automatic 
reanalysis is performed. 

In order to accommodate these two 
forms of hierarchical analysis, the user 
must specify how the abstract is to be 
created, and must also state under 
what conditions it is correct to use the 
abstract in place of the full cell and 
what must be done if these conditions 
are not met. If the abstract is not valid, 
the alternatives are to reanalyze the cell 
or to report it as an error and let the 
user fix it. 

The abstract creation can be speci- 
fied with the same commands used in 
the conventional DRC. The Figure 2 
abstract was created by saving all 
material within some distance (D) of 
the boundary. This can be expressed in 
the operations AND, OR, ANDNOT, 

Figure 3. Occupied area and pins abstract. 
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EXPAND, and CONTRACT as ap- 
plied to  polygons. (The accompanying 
summary box explains these opera- 
tions.) Rules for this operation are. 

abstract = primitives AND 
(boundary ANDNOT 
(boundary CONTRACT D)). 

In addition, the user must specify 
the rules determining which parts of 
electrically conductive polygons within 
the cell are treated as pins. This may be 
done by proximity to the boundary (as 
above) or by establishing a separate 
layer for the purpose. For example, if 
we have a define-pins layer and a 
metal- 1 layer, then the pins on this 
layer are defined as 

pins = metal- 1 AND define-pins. 

Determining whether the abstract 
can be used in place of the cell may in- 
volve many complex rules. The rule is 
simple when overlap capacitance is im- 
portant; if any primitive overlaps a 
cell, then the abstract cannot be used 
and the cell must be reanalyzed with 
the primitive added. When checking 
connectivity, however, the situation is 
more complex. For example, the poly 
layer in an NMOS process may over- 
lap a cell provided that (1) it doesn't 
get within a certain distance of any 
poly in the cell; (2) it doesn't get within 
any (different) distance of diffusion in 
the cell; and (3) it doesn't get within 
any (still different) distance of contacts 
in the cell. There are similar rules for 
all other layers. 

We can check these rules in at least 
two ways: by recording the area that is 
used by the subcell, or by recording the 
area that must be avoided by the par- 
ent cell primitives. For example, sup- 
pose that the relevant rules are 2 
microns poly/poly spacing, 1 micron 
poly/diffusion spacing, and 1.5 mi- 
crons poly/contact spacing. We can 
code these rules in two different ways: 

poly > 2 microns from subcell 
P O ~ Y  

poly > 1 micron from subcell 
diffusion 

poly > 1.5 microns from subcell 
contact 

or, alternatively, for each cell compute 
the poly- keepout layer as 

poly- keepout = (poly EXPAND 2) 
OR 

(diffusion EXPAND 1) OR 
(contact EXPAND 1.5) 

poly > 0 microns from poly- 
keepout. 

These methods are exactly equiva- 
lent only if the same metric is used for 
distance measuring and the ex- 
pand/contract operation. Typically, 
this is not the case since different 
metrics are used for efficiency; the dif- 
ferences, however, are small. 

In the above example, we see two 
separate problems: (1) computing 
the layers that represent a cell at the 
next level of the hierarchy, and (2) 
stating rules that use these abstract 
representations. 

We can express these rules in the 
DRC command file as follows: For 
every user-defined layer, we create two 
other layers-the "occupied" area of 
the subcell (computed when the subcell 
was analyzed), and the "occupied" 
area of the current cell (computed as 
we DRC the cell). In the examples that 
follow, if poly is the user-defined 
layer, then poly[occupied] refers to the 
subcell area occupied by poly if used as 
a source of data. If used as a destina- 
tion, poly refers to the occupied area 
of the cell under consideration. In 
these examples, we expand and then 
contract layers by an amount that 
merges polygons too closely aligned to 
allow any routing between them, 
thereby reducing the amount of data 
that must be handled at the next layer 
of the hierarchy:20 

compute own occupied region: 
poly[occupied] = (poly EXPAND 4) 

CONTRACT 4 
contact[occupied] = (contact 

EXPAND 5) CONTRACT 5 
diffusion[occupied] = (diffusion 

EXPAND 5) CONTRACT 5 

check spacing of poly in cell to poly 
of subcells: 

spacing poly poly [occupied] > 2.0 
spacing poly diffusion[occupied] > 1.0 
spacing poly contact[occupied] > 1.5 

or, if the user wishes to express the 
rules in terms of keepout regions, 

dejine the region wherepoly is not 
legal: 

poly [keepout] = 

(poly EXPAND 2.0) OR 
(contact EXPAND 1.5) OR 
(diffusion EXPAND 1) 

Checkpoly in cell versus keepout of 
subcells: 

spacing poly poly[keepout] > 0.0 

As described earlier, both the rules 
and the abstracts differ for different 
analyses. Each form of analysis has a 
user-supplied name associated with it. 
The DRC program keeps several dif- 
ferent abstract representations for 
each cell-one for each type of analy- 
sis-allowing any analysis of any cell 
at any time. 

Error and circuit output 

Error reporting is more complex for 
a hierarchical analysis tool than for a 
flat analysis tool; the use of the ab- 
stract in place of the complete subcell 
may cause complications. If the "do- 
nut" abstract for a cell is used, for ex- 
ample, the abstract will contain pieces 
of geometry not meeting the minimum 
width rules. The program must ex- 
amine the location of each error to 
determine whether it is real and should 
be reported, or whether it is an abstrac- 
tion process artifact and should be ig- 
nored-not a difficult task provided the 
width of the "donut" is greater than 
the largest rule to be checked. If so, 
each error is reported only once, no er- 
rors are missed, and no false errors are 
generated. l7  

Subcell reanalysis also creates po- 
tential confusion. If a subcell must be 
reanalyzed because a primitive has 
been placed over it, then any discov- 
ered errors must be reported in the 
parent and not the subcell. This will 
generate no false errors, provided that 
the subcell had no errors when ana- 
lyzed by itself. 

Hierarchical circuit extraction al- 
ways generates hierarchical netlists. 
The schematic for each cell is described 
in terms of primitive components, 
such as capacitors and transistors, and 
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references to subcells. If another tool 
requires a fully expanded netlist, then 
a separate program (a netlist compiler) 
must be used to generate the fully ex- 
panded list. If subcells have been rean- 
alyzed because they had primitives 
over them, then multiple netlists exist 
for that cell, one for each different 
overlapping geometry. The netlist of 
the parent cell explicitly refers to these 
subcell versions. Such an approach 
allows most programs that read the 
hierarchical netlists to ignore the dif- 
ference between cells created by the 
user, and cells created by reanalysis. 
The alternative-storing only the dif- 
ferences in the netlists for the different 
versions-would save storage space, 
but at the cost of added complexity. 

Modifications to DRC 

We added the features of the 
previous section to our existing hierar- 
chical DRC/EXTRACT program. 
Designers then used the program to 
perform analyses for many different 
rule sets and processes-processes in- 
cluding NMOS, CMOS, and bipolar. 
The analyses employed simple DRC 
rules, complex DRC rules, continuity- 
only extraction, and full-parameter 
extraction. 

Most users run a simple hierarchical 
continuity extraction, followed by net- 
list comparison, until they achieve the 
correct circuit topology. Then, they 
run a more detailed set of rules to ob- 
tain more accurate parasitics. Some de- 
signers, particularly those designing 
analog circuits, need full cross-cou- 
pling capacitances. They must use re- 
analysis to obtain these capacitances. 
Other designers, primarily those work- 
ing on digital circuits, can approximate 
the cross-coupling capacitances with 
lumped capacitances to ground-an 
approach not requiring reanalysis of 
cells. 

Both full extraction (with internodal 
capacitors) and continuity-only ex- 
traction can be coded by one program 
using different rules. To extract over- 
lap capacitances, we must retain the 
ability to reanalyze when overlapping 
occurs. If reanalysis is always used, 
however, many different versions of 
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simple cells are created (particularly in 
a process with more than one layer of 
metalization). We have seen up to 40 
versions of a single cell. If only conti- 
nuity and lumped capacitance to  
ground are required, then reanalysis is 
avoided by use of keepout layers and 
pins. 

By using keepouts and pins, 85 to 95 
percent of the cells in a typical design 
can be analyzed hierarchically for both 
design rule checking and circuit extrac- 
tion. The major exceptions are ROMs 
and PLAs where users, intending to al- 
ter the subcell's function, have deliber- 
ately placed primitives inside subcells. 
These violations, although bad in prin- 
ciple, can be easily handled in practice. 
Small ROMs and PLAs can be han- 
dled by flattening their hierarchy; large 
ROMs and PLAs, normally machine 
generated, are already handled as spe- 
cial cases. Usually, we don't need cir- 
cuit extraction since the same program 
ge~lerating the PLA generates the sche- 
matic. DRC of the final programmed 
cell is not necessary except, perhaps, 
for a border around the edge. The 
border, another form of abstract, can 
be generated by a rule file that only ap- 
plies to PLAs. 

ROMs and PLAs are handled auto- 
matically by specifying, in the com- 
mand file, that certain cells are to be 
analyzed with different rules. For ex- 
ample, each cell whose name begins 
with "PLAY' can be flattened, while all 
other cells can be treated hierarchical- 
ly. Once ROMs and PLAs are treated 
separately, the percentage of instances 
that cannot be handled hierarchically 
drops to roughly three percent (for a 
design that was not built with hierar- 
chical analysis tools in mind). With 
new designs and cooperative design- 
ers, the percentage of cells that cannot 
be hierarchically analyzed drops to 
zero. 

Measurements of 
custom chips 

Several questions about hierarchical 
analysis techniques can only be an- 
swered by experiment. The most in- 
teresting of these questions is: What 
percentage of analyses performed on 

real designs can be performed hierar- 
chically? This is difficult to quantify 
for several reasons. First, if the analy- 
sis method needs constraints, then the 
percentage will depend on the willing- 
ness of designers to follow those con- 
straints. Furthermore, the analyses 
requested depend heavily upon what 
other tools are available. If the analog 
simulation programs and network 
comparison programs only work on 
flat i n p ~ t ,  for example, then the de- 
signer has no use for hierarchical cir- 
cuit extraction. 

Nonetheless, the hierarchichal re- 
strictions that designers will accept can 
be estimated by examining chips de- 
signed using only flat analysis tools. 
Designers using these tools employ 
hierarchy only as an aid to building 
and understanding these circuits-not 
a true test of designer wants since, by 
analogy with programming, when 
hierarchical tools are available design- 
ers will use them. However, the struc- 
ture designers impose provides a lower 
bound to the structure they will accept. 

Table 1 lists statistics from two large 
custom chips. One is Berkeley's RISC- 
I1 chip; the other is the 9852 CRT con- 
troller from Advanced Micro Devices. 
Both were designed with flat analysis 
tools and hierarchical editors. Both are 
built in an NMOS process. Table 1 
reports cell uses two ways: First, an ar- 
ray of cells is counted as one reference; 
second, an array of Ncells is treated as 
N separate subcells. 

The incentive for hierarchical DRC 
is clear from Table 1; if we analyze 
each cell once in the RISC-I1 design, 
we analyze roughly 24,000 trapezoids. 
If we analyze the flat design, we need 
to analyze roughly 461,000 trapezoids. 
Moreover, DRC algorithms are worse 
than linear so the difference is further 
magnified. On the other hand, when a 
cell is analyzed hierarchically informa- 
tion from subcells must be included 
and the abstract must be generated. 
This decreases the advantzge of the 
hierarchical approach, but reductions 
of between 400 to 1000 percent in CPU 
time remain typical. 

The performance of the hierarchical 
DRC/EXTRACT depends drarnati- 
cally on the required reanalysis. If no 
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performed by DRC. 

Basic Geometrical Operations for Design Rule Checking 

Design rule checking is built around two basic operations: measuring 
geometry, and creating new geometry as a function of existing shapes. 
Operations define which regions to test, and measurements find the errors 
which are reported to the user. Measurements are performed between all 
edges of a given type. The basic tests are illustrated in Figures l ac .  

Geometrical operations isolate features to be tested. A nonimplanted 
transistor, for example, occurs only where polysilicon and diffusion 
coincide and the implant mask is not present. In this case, the logical 
operations can generate geometry corresponding to these transistors 
only. For operations on geometry, each region on an IC mask can be 
regarded as a set of points in the Cartesian plane, allowing operations of 
AND, OR, ANDNOT, and XOR to be performed pointwise. Figure 2 shows 
the results of these operations on two rectangles. 

The operations EXPAND and CONTRACT work on a single layer. 
EXPAND makes all polygons on a layer bigger without affecting their 
position. CONTRACT makes them smaller. EXPAND is performed by 
including all points within a given distance into the existing set, possibly 
causing adjacent figures to merge and holes inside figures to disappear. 
CONTRACT is performed by deleting from a figure all points within a 
specified distance of any point not in the figure. CONTRACT can cause 
single figures to break into multiple figures, and can cause figures to 
disappear entirely. 

The exact results of EXPAND and CONTRACT depend on the metric 
used. The Euclidean metric is perhaps the most natural, but a square 
corner will turn into an arc if expanded using the Euclidean metric. Arcs are 
more difficult both to deal with computationally and to reproduce with 
mask-making machines, most of which are based on rectangles or 
trapezoids; approximating circular arcs with these figures increases the 
cost manyfold. 

By using a different metric, square corners will remain square-useful 
for making masks, but resulting in corners being overexpanded. A 
compromise, such as the octagonal metric, reduces the maximum error to 
eight percent while adding only one side to an original square. Figures 3a-b 
show the results of EXPAND and CONTRACT on severa! images, using 
different metrics. 

aAND b aORb aANDNOTb aXORb 

Figure 2. Logical operations on two rectangles. 

reanalysis i s  required, performing a 
15-rule circuit extraction on the RISC- 
I1 chip takes about 6000 CPU seconds. 
With a set o f  rules that forces reanaly- 
sis o f  every instance o f  every cell, the 
same analysis takes roughly 40,000 
CPU seconds (for an 8 MHz Motorola 
68000). 

Table 2 enumerates cell use in the 
hierarchy. Each cell in the design i s  
looked at once (no matter how many 

times i t  i s  used) and the subcegs used 
are counted. This corresponds to the 
number o f  subcell references a hierar- 
chical analysis program must analyze. 
For the first measurement ("with over- 
lap") we build an abstract for each cell 
by expanding and then contracting 
each layer, and by removing holes. I f  
any parent cell geometry overlaps this 
region, the cell i s  counted in t h i s  
group. 

Next, we look for overlaps changing 
the subcell's circuit. Since all the chips 
considered here are poly-gate MOS, 
we can do th i s  by searching for poly 
overlapping the diffusion o f  subcells 
or vice versa. 

Finally, we assume that ROMs and 
PLAs will be analyzed with different 
rules as discussed in the previous sec- 
tion. Therefore, we recalculate the per- 
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Figure 3a-b. Expansion and contraction with different metrics. 

centages excluding these cells-labelled 
' 'non-ROM circuit mods," these cells 
cannot be analyzed hierarchically for 
circuit extraction. 

The results clearly show that while 
designers often put primitives over 
cells, they generally change the circuits 
of subcells only in certain well-defined 
cases. Except for ROMs and PLAs, 
just a small percentage of cell refer- 
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ences change the subcell circuitry. Ex- 
amination of these remaining cases 
shows that, if necessary, they could be 
done as easily without circuit modifi- 
cation. The tools used in developing 
these examples provided no such in- 
centive. It's very encouraging that 
only a small number of cells violate 
hierarchical constraints, even in the 
absence of explicit rules forbidding 
these violations. 

Table 1. Custom chip statistics. 

chip RISC-II 8052 

Each cell once: 
number of cells 346 487 
references (no arrays) 1360 3704 
references (with arrays) 2966 1091 5 
trapezoids in all cells 23565 17371 7 

Full hierarchy: 
references (expanded) 1069 4330 
references (with arrays) 11367 20693 
total trapezoids 460537 101 5479 

Table 2. Modification of subcells. 

RISC-II 8052 

references 1360 3704 
with overlap 87.9% 94.5% 
with circuit mods 11.6% 17.8% 
ROMs, PLAs 10.0% 13.4% 
non-ROM circuit mods 1.54% 4.32% 

ur experiments show hierar- 
chical analysis of IC layouts to 

be practical-providing the perfor- 
mance benefits of hierarchical analy- 
sis, improving error reporting, and 
allowing the use of circuit tools need- 
ing hierarchical input-without re- 
quiring major changes in layout de- 
sign. However, different approaches 
to hierarchical analysis are required 
depending on analyses requested by 
designers. Some requests demand sub- 
cell reanalysis for sufficient accuracy; 
for other requests, this reanalysis is un- 
necessary and time-consuming. 

With the addition of four new fea- 
tures, a hierarchical DRC and circuit 
extraction program can handle all 
commonly required forms of analysis. 
These features are: user-defined ab- 
stract generation, userdefined rules 
stating when the abstract is valid, user 
specification of what to do with an in- 
valid abstract in a given context, and 
user specification of analysis form de- 
pending on the cell type. 

There are several advantages to this 
program. AU common layout analysis 
operations can be performed with 
user-specified hierarchy. The user, not 



the program, makes tradeoffs between 
the performance advantages of pre- 
serving the hierarchy and additional 
operations (such as detection of over- 
lap capacitance) possible with explicit 
subcell reanalysis. In particular, this 
program handles multiple intercon- 
nect layers and cells with internal ter- 
minals; these are analyzed using the 
user-specified hierarchy and without 
subcell reanalysis. The same program, 
with different rules, can also handle 
problems (such as the calculation of 
overlap capacitance) requiring subcell 
reanalysis. 

Hierarchical analysis tools resemble 
structured programming tools. AU are 
designed with consideration given to 
existing applications, but the real test 
comes as users grow familiar with the 
tools and design new applications. In 
each case, there are many possible 
tradeoffs between user constraints and 
ease of analysis. In each case, com- 
plexity limits the size of practical 
design. As has proven true with pro- 
gramming tools, human understand- 
ing of both the layouts and the results 
of the analysis tools probably deter- 
mines the proper tradeoffs for IC 
layouts. Thus, the designs and tools 
most easily understood by human 
designers present a promising topic for 
future research. i% 
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