
Mike Tucker, Hewlett-Packard Company
Lou Scheffer, Valid Logic Systems, Inc.

ierarchical CAD tools hold promise for effectively
managing the design of custom VLSI circuits.
However, the implementation of these tools has suf-

fered because of the common design practice of overlapping
cells. Overlapping cells cannot be checked separately; they
must be merged together before checking. This merging
removes all the advantages of the hierarchical format. A solu-
tion used by some artwork checking systems (Whitney, 1981),
is to take advantage of the hierarchy where it is present, but
check overlapping cells in the usual way. A more effective
approach is to preserve the hierarchy throughout the design
process by severely limiting the amount of cell overlap. This
can be done with no loss of chip area, and allows for much more
effective verification techniques.

Cell overlap in IC design is like GOTOs in programming
languages. These features are bad not only because they violate
hierarchical design principles, but also because they impede
verification and make human understanding difficult.
However, overlaps (and GOTOs) are useful in some situations
so it makes sense to limit the use of these features to cases that
are easy to understand and verify.

An "Ideal" Methodology

Suppose we design a hierarchical IC layout so that no two
cells overlap, and so that no primitives overlap the cells. This
approach' provides several advantages:

cell need only be checked once, regardless of how many
times it is used.

5. Changes in a design are much easier to check. Suppose a
single cell is changed, and then verified by itself. If the
boundary of the cell has not changed, then no higher-level
cells need be checked. The lack of overlap means that a
change to artworbthat is not located on the edges of a cell
does not affect any other cell. On the other hand, if overlap
is allowed, then change in any cell will require rechecking
the whole design.

Unfortunately, almost all of these advantages rely on a com-
plete lack of overlap. For various reasons, however, most
existing designs do have some overlap. This overlap may exist
for innocuous reasons, such as the designers' desire to share
buses, or because of a limited artwork system that only allows
rectangular cells. Often, though, overlapping cells are a viola-
tion of hierarchical design principles; such cells often exist
because there was no tangible advantage in maintaining a truly
hierarchical design. Therefore, an ideal design methodology
would accept "harmless" overlaps, but prohibit extensive vio-
lations of the hierarchy. This approach would preserve the
advantages listed above, while causing minimum incon-
venience to the designer.

Generalization Attempts

1. Most operations can be done one cell at a time. These
operations include design-rule checking (DRC), component
extraction, cross-comparison between the schematic and
ihe layout, and generation of new layers. This is a result of
the no-overlap rule, which ensures that all instances of a
given cell are identical.

2. Each cell may be verified when it is created. This feature
distributes the verification effort throughout the design
cycle. Errors are caught when they are easy to fix, rather
than late in the design cycle, when changes are difficult.

3. Error reporting is much better. Beqause each cell is checked
only once, multiple uses or "instances" of a cell which
contains an error do not produce multiple diagnostics. Oper-
ations such as circuit-to-artwork comparison can pinpoint
the locations of errors to a single cell.

4. Performance is greatly improved. The time it takes most
DRC algorithms to run increases exponentially with the
number of items checked. If overlap is not allowed,
however, the time required to check all cells and cell interac-
tions increases linearly (Scheffer, 1982). Furthermore, each

HP design groups have objected to a complete ban on over-
laps primarily because of shared buses. In shared busing, two
cells, each containing a single line adjacent to the cell bound-
ary, are overlapped so that the limes coincide (Figure 1). The
no-overlap constraint causes designers to include half of the
bus width in each cell, thus creating two problems:

* Due to the half-width bus, neither cell definition honors the
design rules;
If either cell is instanced by itself, a half-width bus, adjacent
to the cell, must be added manually.

Unfortunately, these problems cannot be dismissed on
grounds of rarity; the use of shared buses to save area is far too
common. Two possible solutions are:

1. Do not include shared buses in the cells which use them; put
them outside the cells instead.

2. Let geometry overlap the cell boundary.

The first solution is the less desirable one from a designer's
viewpoint, because it does not let transistors in the cell be put

60 VLSI DESIGN MaylJune 1982

FIGURE 1. Shared bus.

E-BEAM PATTERN
GWEWITOR

FIGURE 2. Artwork data flow.

under the bus. This problem is particularly acute in advanced
double-layer metal MOS processes, in which the upper metal
layer (used for busing) may have arelatively large minimum line
width (Mikkelson et al., 1981). Therefore, the alternative is to
let geometry overlap the cell boundary. The following overlap
rules allow shared busing:

Rule 1 : Artwork primitives in a cell definition may extend
outside the user-specified cell boundary.

Rule 2: Boundaries of cell instances may not overlap.
Rule 3: Artwork primitives that overlap a cell instance bound-

ary must extend into the cell by no more than a mini-
mum line width; they must also be overlapped by
existing cell geometry.

This modification of the methodology requires that only one
more design rule test be performed: geometry that overlaps the
cell boundary of an instanced cell must be flagged if it is not
overlapped by geometry within the included cell.

Ports

Designers have long wanted to be able to compare schemat-
ics to artwork. The schematic drawing systems used to create

machine-readable schematics usually allow two types of sig-
nals to be connected into a cell:
1. Signals which enter through pre-defined "ports";
2. Global signals, such as power and ground.

Both types of 110 signals must be named. Artwork and sche-
matic data can be compared accurately by a hierarchical
method if artwork 110 signals also have corresponding names.
Providing these names is relatively easy, because all 110 signals
in the artwork are ports (no global signals exist).

Thus, the following additional constraints make this compar-
ison easy:

Rule 4: All cell definitions must be named.
Rule 5: In a eel1 definition, any geometric figure that touches or

extends beyond the cell boundary is a port of the cell.
All ports must have names.

Rule 6: All cell instances must be named.

Implementation

A new artwork design and verification system being devel-
oped at Hewlett-Packard uses these constraints to provide fast
verification. The following questions are some of the ones that
arise when such a system is implemented:

How are ports recognized?
How are overlap limitations enforced?
How is the external abstraction of a cell created?
How are DRC errors communicated to the designer?

Data Representation

We chose a single database containing all artwork data for
the following two reasons:

1. The geometric operations traditionally used for DRC are
also used in this system to create cell abstractions.

2. We wanted to use the graphics editor to look at DRC test
reports.

With such close coupling between traditional DRC functions
and editing functions, data translation can be avoided by using
a single database for both. Figure 2 shows an overall artwork
data-flow diagram.

Within a cell, each line segment on a layer is ordered in two
ways:

1. By means of a geometric X-Y ordered tree. This method
provides sorted line segments, which are useful in algorith-
mic operations. Unlike a sorted sequential file, it allows
incremental changes in the data.

2. By grouping into polygonal shapes. This method is preferred
for graphics editing.

The data representation is complicated by the fact that cell
definitions may contain geometry that exists outside of the cell
boundary. When an instance of a cell is placed inside a "father-
cell", each figure of the "son-cell" that is outside the cell
boundary is entered as a figure in the father-cell. These figures
are identified as being attached to the son-cell; they cannot be
moved independently. They are treated as figures in the father-
cell when artwork operations, component extraction, and
artwork output functions are performed.

The database also contains a globalprocess file that specifies
the sequence of operations and tests required to check design
rules, extract the electrical components, and create cell

VLSl DESIGN MaylJune 1982 61

abstractions. Each user-specified command sequence is
named, and can be invoked from the graphics editor, either as a
foreground or a background task.

Artwork Editing

The artwork editor is functionally similar to a previous
Hewlett-Packard graphics editor (Infante et al., 1978). One
significant modification is that angles are locked to multiples of
90 degrees ("Manhattan" angles). Another difference is that
cell boundaries can be polygonal, as opposed to rectangular,
and can be specified by the user. The use of polygonal bound-
aries prevents a decrease in density when cell overlap is
constrained.

A unique characteristic of the editor is the interaction be-
tween it and the artwork operations. A new cell that has been
drawn and saved ,is not instantly available to the editor for
inclusion in other cells. It must first be abstracted; that is, the
external view of the cell must be created by artwork operations
such as AND, OR, N o ~ a n d OVERSIZE, as specified in the process
file. A macro facility within the editor lets the operations and
tests be performed whenever a cell is saved.

Artwork Operations and Modifications

Four artwork operations are provided:

1. Union or "OR"
2. Intersection or "AND"
3. Removal or "AND-NOT"
4. Polygon OVERSIZE (positive and negative)

These operations form the backbone of the following
capabilities:

* Cell abstraction
DRC feature isolation
Component extraction (transistor and capacitor isolation)

Most of these operations are well known'for designing non-
hierarchical artwork. The first three operations work normally

FULL
B I T

'ADDER

GND

FIGURE 3. Different cell representations are used, depending
on the needed level of abstraction. (a) Complete mask
description of a full bit adder cell. (b) Bounded cell
representation, with the external port connections labeled.
(c) "Donut"of the cell,.with a11 geometrywithin MAXRULE of the
boundary shown.

in this hierarchical system, without any special cases, due to
the limit on overlaps. The OVERSIZE operation algorithm must
be modified for hierarchical operation, however, to prevent
negative oversizing from causing port geometries to shrink
away from the cell boundary.

Design-Rule Checking

Design-rule checking of a primitive cell (one which does not
include other cells) is the same as it is in the non-hierarchical

62 VLSl DESIGN MaylJune 1982

case. No false errors need be handled as special cases, for the
following reasons:

1. Shared buses are drawn so that half the bus width extends
beyond the cell boundary.

2. No enclosure violations can exist, because of the overlap
restriction.

Aftei checking the cell, a "donut" of the cell is created
(Figure 3c). This abstraction consists of

1. All geometry outside the cell boundary.
2. All geometry within MAXRULE distance of the cell bound-

ary, where MAXRULE is the maximum external spacing
rule in force.

Checking the design rules of a cell that contains other cells
requires that "donuts" exist for all of the son cells. Before
checking a father cell, the donut geometries of the son-cells are
merged with the geometry of the father-cell. The boundaries of
all son-cells are kept as a separate mask level. When the design
rules of the father-cell are checked, any internal-width and
enclosure violations that are detected must be ignored-ifthey
are within a son-cell boundary. Spacing violations are reported
unless both violating line segments are within a single son-cell's
boundary.

All of the rules, including the complicated anti-reflection
rules, can be checked using this method. This contrasts with
other DRC methods that check for validity while the editing is
in progress. These other techniques provide interactive feed-
back, but they cannot check some of the more difficult rules.

If the user asks that checking be performed automatically
whenever a cell is saved, a "donut" of each cell is always
available for checking higher-level cells. If automatic checking
is not used, then checking of a given cell forces a DRC of any
son-cell that has not been checked since the last time it was
modified by the editor.

Component Extraction

Component extraction refers to the analysis of IC artwork to
obtain the equivalent transistor-level schematic net-list. This
transistor circiiit is usually post-processed to yield a logic-level
circuit. Designers have long wanted to compare this logic-level
schematic with a schematic previously entered into a drawing
system. This comparison is difficult, at best, if it must be
performed on the whole chip. It is especially difficult to pin-
point the area in which an error has occurred. However, with
hierarchical component extraction the comparison is much
simpler, and the error-reporting is far more precise.

Hierarchical extraction requires one additional constraint:

Rule 7: The active area of a transistor may not touch the cell
boundary.

This rule prevents transistors from crossing cell boundaries,
thereby letting each cell be extracted independently.

Component extraction of a cell is straightforward. Only the
geometry within the cell boundary is extracted. All geometry
outside the cell boundary is extracted with each cell instance.
Extraction steps include the identification and sizing of transis-
tors, area capacitance, sidewall capacitance (except at the cell
boundary, where computation is deferred until the cell is used),
and node-to-node capacitance. Node-to-node capacitance cal-
culation can only be done between nodes within a cell. Connec-

tions to all son cells are also recorded.
The resultant transistor-level schematic can be converted to

a logic-level schematic, which can be compared to a previously
entered schematic. Comparison is simplified by the fact that
each cell instance must be named. Because this constraint also
exists in the logic-design system, mismatches can be reported
precisely.

Artwork Modification

H P designers have been able to modify artwork algorithmi-
cally since 1978 (Tucker and Haydamack, 1978). They use this
capability primarily to modify circuits so as to track process
changes which are made to improve yield and performance.
This capability requires no additional software in this system
because the database for the editor is the same as that used for
the artwork operations. Modified artwork is output the same
way as other artwork.

Artwork Output

The output subsystem avoids the restriction to Manhattan
geometries imposed on the rest of the system. Although Man-
hattan angles were strictly adhered to in the design of a recent
32-bit processor (Beyers et al., 1981), the use of 45-degree
angles for low-level cells can save a lot of area in some pro-
cesses. Therefore; the output subsystem allows output of cells
that have been designed using other artwork systems. The
database contains only a hand-drawn abstraction for these cells
along with a fde name. This file contains the detailed cell
artwork in a common interchange format.

Artwork can be output for either reticle pattern generators or
e-beam exposure systems. Pattern generator output is espe-
cially fast in this system, because the overlap constraints allow
hierarchical rectangle fracturing without double exposing any
edges.

Performance

Early performance results are encouraging. A prototype sys-
tem shows roughly the expected gains in performance. A 32-bit
ALU and register stack, comprising 92,000 rectangles and
14,000 devices, is processed in 2.5 minutes on a DEC 2060. The
processing includes generating four new layers, extracting a
hierarchical schematic from the artwork, and converting the
input layers and the generated layers into rectangles. The same
task takes 60 times as long on a conventional system that
expands the hierarchy before doing the analysis. The perfor-
mance is eight times better because repeated cells are looked at
only once.The rest of the performance gain is due to the smaller
amount of data handled.

Furthermore, the cost of checking each cell as soon as it is
entered is not prohibitive. Even for the largest cell, only 15
seconds of CPU timeare needed to perform the operations

'which generate the new layers and extract the schemaic. This
procedure provides immediate feedback, and keeps errors
from being propagated throughout a design.

Other Methodologies

We have presented a single methodology for developing
hierarchical circuits. However, the same tools can be used for
somewhat different methodologies. In particular, the overlap
restrictions can be modified by specifying different operations
in the process file. Loosening the overlap constraints will in-

64 VLSl DESIGN MaylJune 1982

evitably decrease the verification performance, because more
interactions will have to be checked.

References

Beyers, J.W., L.J. Dohse, J.P. Fucetola, R.L. Kochis, C.G. Lob, G.L.
Tavlor. and E.R. Zeller. 1981. "A 32b VLSI CPU Chip," ZSSCC
~ & e s ; of Technical Papers.

Infante. B.. D. Bracken. B. McCalla, S. Yarnakoshi, and E. Cohen.
1978. ' " ~ n ~nteractive Graphics System for the Design of In-
tegrated Circuits," Proceedings of the 15th Design Automation
~onference.

Mikkelson, J.M., L.A. Hall, A.K. Malhotra, S.D. Seccombe, and M.S.
Wilson. 1981. "An nMOS Process for Fabrication of a 32b CPU
Chip," ZSSCC Digest of Technical Papers.

Scheffer, L. 1982. "IC Design and Verification Using Strict Hierarchy
and Programmability," Ph.D. thesis, Stanford University.

Tucker, M. and B. Haydamack. 1978. "A System for Modifying In-
tegrated Circuit Artwork Through Geometric Operations,"
Asilomar Conference on Circuits, Systems and Components.

Whitney,T. First Quarter 1981. "A Hierarchical Design-Rule Checking
Algorithm," LAMBDA (now VLSI DESIGN).

About the Authors

Mike Tucker received the BSEE degree
(1974) from Iowa State University and the
MSEE degree (1975) from Stanford Univer-
sity. He joined Hewlett-Packard in 1975.
Since 1976, he has been with Hewlett-
Packard Design Aids in Cupertino, Califor-
nia, where he is now Design Verification
Project Manager.

Lou Scheffer received the BSEE degree
(1974) and the MSEE (1975) from Caltech. At
Hewlett-Packard in Loveland, Colorado, he
helped design and lay out a digital filter chip
for a spectrum analyzer. This experience
prompted his interest in CAD tools, so he
moved to California, to develop CAD tools
for HP and to work toward the Ph.D. degree
in the CAD area at Stanford. Lou now works
for Valid Logic Systems, Inc. in Sunnyvale,
California.

Please notify us four weeks in advance.

Name

Company

Address

City

Statelcountry

Zip

Please attach your old address label here.

Mail to:

VLSl DESlG
P.O. Box 5051 8

Palo Alto, California 94303-0518

The awesome advances
that have been made in
semiconductor technology
share a common source:
human imagination. GTE
Microcircuits believes in
the ingenuity that turns
ideas into state-of-the-art
applications.
The future promises to be
even more exciting: new
technologies, expanding
facilities, equipment and
personnel join to make our
telecommunications
products, microprocessors
and custom ICs superior.
Positions are available in
the following areas:

DESIGN ENGINEERS
Gate Arrays, Memory,
Telecom and Data
Communications.

SOFTWARE
PRODUCT TEST
ENGINEERS
XINCOM or LTX.

SOFTWARE
MANAGER &
ENGINEERS
Support circuitdesign- 2
micron and below; device
modeling, logic simulation.

PRODUCT
ENGINEERS
Memory Devices
(RAMS/ROMS) or
Telecom & Datacom.

Complete the coupon
below and return it today
with your resumein
complete confidence to:

GTE
MICROCIRCUITS

Attn: Bob Williams
Dept. VLSI
2000 W. 14th Street
Tempe, AZ 85281

Equal Opportunity
Employer M:F

Name
Address
City S t a t e d i p -
Phone/Home Business
Present Employer Position
Position Sought

VLSI

Microcircuits

VLSI DESIGN MaylJune'l982 65

