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ierarchical CAD tools hold promise for effectively 
managing the  design of custom VLSI circuits. 
However, the implementation of these tools has suf- 

fered because of the common design practice of overlapping 
cells. Overlapping cells cannot be checked separately; they 
must be merged together before checking. This merging 
removes all the advantages of the hierarchical format. A solu- 
tion used by some artwork checking systems (Whitney, 1981), 
is to take advantage of the hierarchy where it is present, but 
check overlapping cells in the usual way. A more effective 
approach is to preserve the hierarchy throughout the design 
process by severely limiting the amount of cell overlap. This 
can be done with no loss of chip area, and allows for much more 
effective verification techniques. 

Cell overlap in IC design is like GOTOs in programming 
languages. These features are bad not only because they violate 
hierarchical design principles, but also because they impede 
verification and  make human understanding difficult. 
However, overlaps (and GOTOs) are useful in some situations 
so it makes sense to limit the use of these features to cases that 
are easy to understand and verify. 

An "Ideal" Methodology 

Suppose we design a hierarchical IC layout so that no two 
cells overlap, and so that no primitives overlap the cells. This 
approach' provides several advantages: 

cell need only be checked once, regardless of how many 
times it is used. 

5. Changes in a design are much easier to check. Suppose a 
single cell is changed, and then verified by itself. If the 
boundary of the cell has not changed, then no higher-level 
cells need be checked. The lack of overlap means that a 
change to artworbthat is not located on the edges of a cell 
does not affect any other cell. On the other hand, if overlap 
is allowed, then change in any cell will require rechecking 
the whole design. 

Unfortunately, almost all of these advantages rely on a com- 
plete lack of overlap. For various reasons, however, most 
existing designs do have some overlap. This overlap may exist 
for innocuous reasons, such as the designers' desire to share 
buses, or because of a limited artwork system that only allows 
rectangular cells. Often, though, overlapping cells are a viola- 
tion of hierarchical design principles; such cells often exist 
because there was no tangible advantage in maintaining a truly 
hierarchical design. Therefore, an ideal design methodology 
would accept "harmless" overlaps, but prohibit extensive vio- 
lations of the hierarchy. This approach would preserve the 
advantages listed above, while causing minimum incon- 
venience to the designer. 

Generalization Attempts 

1. Most operations can be done one cell at a time. These 
operations include design-rule checking (DRC), component 
extraction, cross-comparison between the schematic and 
ihe layout, and generation of new layers. This is a result of 
the no-overlap rule, which ensures that all instances of a 
given cell are identical. 

2. Each cell may be verified when it is created. This feature 
distributes the verification effort throughout the design 
cycle. Errors are caught when they are easy to fix, rather 
than late in the design cycle, when changes are difficult. 

3. Error reporting is much better. Beqause each cell is checked 
only once, multiple uses or "instances" of a cell which 
contains an error do not produce multiple diagnostics. Oper- 
ations such as circuit-to-artwork comparison can pinpoint 
the locations of errors to a single cell. 

4. Performance is greatly improved. The time it takes most 
DRC algorithms to run increases exponentially with the 
number of items checked. If overlap is not allowed, 
however, the time required to check all cells and cell interac- 
tions increases linearly (Scheffer, 1982). Furthermore, each 

HP design groups have objected to a complete ban on over- 
laps primarily because of shared buses. In shared busing, two 
cells, each containing a single line adjacent to the cell bound- 
ary, are overlapped so that the limes coincide (Figure 1). The 
no-overlap constraint causes designers to include half of the 
bus width in each cell, thus creating two problems: 

* Due to the half-width bus, neither cell definition honors the 
design rules; 
If either cell is instanced by itself, a half-width bus, adjacent 
to the cell, must be added manually. 

Unfortunately, these problems cannot be dismissed on 
grounds of rarity; the use of shared buses to save area is far too 
common. Two possible solutions are: 

1. Do not include shared buses in the cells which use them; put 
them outside the cells instead. 

2. Let geometry overlap the cell boundary. 

The first solution is the less desirable one from a designer's 
viewpoint, because it does not let transistors in the cell be put 
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FIGURE 1. Shared bus. 
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FIGURE 2. Artwork data flow. 

under the bus. This problem is particularly acute in advanced 
double-layer metal MOS processes, in which the upper metal 
layer (used for busing) may have arelatively large minimum line 
width (Mikkelson et al., 1981). Therefore, the alternative is to 
let geometry overlap the cell boundary. The following overlap 
rules allow shared busing: 

Rule 1 :  Artwork primitives in a cell definition may extend 
outside the user-specified cell boundary. 

Rule 2: Boundaries of cell instances may not overlap. 
Rule 3:  Artwork primitives that overlap a cell instance bound- 

ary must extend into the cell by no more than a mini- 
mum line width; they must also be overlapped by 
existing cell geometry. 

This modification of the methodology requires that only one 
more design rule test be performed: geometry that overlaps the 
cell boundary of an instanced cell must be flagged if it is not 
overlapped by geometry within the included cell. 

Ports 

Designers have long wanted to be able to compare schemat- 
ics to artwork. The schematic drawing systems used to create 

machine-readable schematics usually allow two types of sig- 
nals to be connected into a cell: 
1. Signals which enter through pre-defined "ports"; 
2. Global signals, such as power and ground. 

Both types of 110 signals must be named. Artwork and sche- 
matic data can be compared accurately by a hierarchical 
method if artwork 110 signals also have corresponding names. 
Providing these names is relatively easy, because all 110 signals 
in the artwork are ports (no global signals exist). 

Thus, the following additional constraints make this compar- 
ison easy: 

Rule 4: All cell definitions must be named. 
Rule 5: In a eel1 definition, any geometric figure that touches or 

extends beyond the cell boundary is a port of the cell. 
All ports must have names. 

Rule 6:  All cell instances must be named. 

Implementation 

A new artwork design and verification system being devel- 
oped at Hewlett-Packard uses these constraints to provide fast 
verification. The following questions are some of the ones that 
arise when such a system is implemented: 

How are ports recognized? 
How are overlap limitations enforced? 
How is the external abstraction of a cell created? 
How are DRC errors communicated to the designer? 

Data Representation 

We chose a single database containing all artwork data for 
the following two reasons: 

1. The geometric operations traditionally used for DRC are 
also used in this system to create cell abstractions. 

2. We wanted to use the graphics editor to look at DRC test 
reports. 

With such close coupling between traditional DRC functions 
and editing functions, data translation can be avoided by using 
a single database for both. Figure 2 shows an overall artwork 
data-flow diagram. 

Within a cell, each line segment on a layer is ordered in two 
ways: 

1. By means of a geometric X-Y ordered tree. This method 
provides sorted line segments, which are useful in algorith- 
mic operations. Unlike a sorted sequential file, it allows 
incremental changes in the data. 

2. By grouping into polygonal shapes. This method is preferred 
for graphics editing. 

The data representation is complicated by the fact that cell 
definitions may contain geometry that exists outside of the cell 
boundary. When an instance of a cell is placed inside a "father- 
cell", each figure of the "son-cell" that is outside the cell 
boundary is entered as a figure in the father-cell. These figures 
are identified as being attached to the son-cell; they cannot be 
moved independently. They are treated as figures in the father- 
cell when artwork operations, component extraction, and 
artwork output functions are performed. 

The database also contains a globalprocess file that specifies 
the sequence of operations and tests required to check design 
rules, extract the electrical components, and create cell 
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abstractions. Each user-specified command sequence is 
named, and can be invoked from the graphics editor, either as a 
foreground or a background task. 

Artwork Editing 

The artwork editor is functionally similar to a previous 
Hewlett-Packard graphics editor (Infante et al., 1978). One 
significant modification is that angles are locked to multiples of 
90 degrees ("Manhattan" angles). Another difference is that 
cell boundaries can be polygonal, as opposed to rectangular, 
and can be specified by the user. The use of polygonal bound- 
aries prevents a decrease in density when cell overlap is 
constrained. 

A unique characteristic of the editor is the interaction be- 
tween it and the artwork operations. A new cell that has been 
drawn and saved ,is not instantly available to the editor for 
inclusion in other cells. It must first be abstracted; that is, the 
external view of the cell must be created by artwork operations 
such as AND, OR, N o ~ a n d  OVERSIZE, as specified in the process 
file. A macro facility within the editor lets the operations and 
tests be performed whenever a cell is saved. 

Artwork Operations and Modifications 

Four artwork operations are provided: 

1. Union or "OR" 
2. Intersection or "AND" 
3. Removal or "AND-NOT" 
4. Polygon OVERSIZE (positive and negative) 

These operations form the backbone of the following 
capabilities: 

* Cell abstraction 
DRC feature isolation 
Component extraction (transistor and capacitor isolation) 

Most of these operations are well known'for designing non- 
hierarchical artwork. The first three operations work normally 

FULL 
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FIGURE 3. Different cell representations are used, depending 
on the needed level of abstraction. (a) Complete mask 
description of a full bit adder cell. (b) Bounded cell 
representation, with the external port connections labeled. 
(c) "Donut"of the cell,.with a11 geometrywithin MAXRULE of the 
boundary shown. 

in this hierarchical system, without any special cases, due to 
the limit on overlaps. The OVERSIZE operation algorithm must 
be modified for hierarchical operation, however, to prevent 
negative oversizing from causing port geometries to shrink 
away from the cell boundary. 

Design-Rule Checking 

Design-rule checking of a primitive cell (one which does not 
include other cells) is the same as it is in the non-hierarchical 
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case. No false errors need be handled as special cases, for the 
following reasons: 

1. Shared buses are drawn so that half the bus width extends 
beyond the cell boundary. 

2. No enclosure violations can exist, because of the overlap 
restriction. 

Aftei checking the cell, a "donut" of the cell is created 
(Figure 3c). This abstraction consists of 

1. All geometry outside the cell boundary. 
2. All geometry within MAXRULE distance of the cell bound- 

ary, where MAXRULE is the maximum external spacing 
rule in force. 

Checking the design rules of a cell that contains other cells 
requires that "donuts" exist for all of the son cells. Before 
checking a father cell, the donut geometries of the son-cells are 
merged with the geometry of the father-cell. The boundaries of 
all son-cells are kept as a separate mask level. When the design 
rules of the father-cell are checked, any internal-width and 
enclosure violations that are detected must be ignored-ifthey 
are within a son-cell boundary. Spacing violations are reported 
unless both violating line segments are within a single son-cell's 
boundary. 

All of the rules, including the complicated anti-reflection 
rules, can be checked using this method. This contrasts with 
other DRC methods that check for validity while the editing is 
in progress. These other techniques provide interactive feed- 
back, but they cannot check some of the more difficult rules. 

If the user asks that checking be performed automatically 
whenever a cell is saved, a "donut" of each cell is always 
available for checking higher-level cells. If automatic checking 
is not used, then checking of a given cell forces a DRC of any 
son-cell that has not been checked since the last time it was 
modified by the editor. 

Component Extraction 

Component extraction refers to the analysis of IC artwork to 
obtain the equivalent transistor-level schematic net-list. This 
transistor circiiit is usually post-processed to yield a logic-level 
circuit. Designers have long wanted to compare this logic-level 
schematic with a schematic previously entered into a drawing 
system. This comparison is difficult, at best, if it must be 
performed on the whole chip. It is especially difficult to pin- 
point the area in which an error has occurred. However, with 
hierarchical component extraction the comparison is much 
simpler, and the error-reporting is far more precise. 

Hierarchical extraction requires one additional constraint: 

Rule 7: The active area of a transistor may not touch the cell 
boundary. 

This rule prevents transistors from crossing cell boundaries, 
thereby letting each cell be extracted independently. 

Component extraction of a cell is straightforward. Only the 
geometry within the cell boundary is extracted. All geometry 
outside the cell boundary is extracted with each cell instance. 
Extraction steps include the identification and sizing of transis- 
tors, area capacitance, sidewall capacitance (except at the cell 
boundary, where computation is deferred until the cell is used), 
and node-to-node capacitance. Node-to-node capacitance cal- 
culation can only be done between nodes within a cell. Connec- 

tions to all son cells are also recorded. 
The resultant transistor-level schematic can be converted to 

a logic-level schematic, which can be compared to a previously 
entered schematic. Comparison is simplified by the fact that 
each cell instance must be named. Because this constraint also 
exists in the logic-design system, mismatches can be reported 
precisely. 

Artwork Modification 

H P  designers have been able to modify artwork algorithmi- 
cally since 1978 (Tucker and Haydamack, 1978). They use this 
capability primarily to modify circuits so as to track process 
changes which are made to improve yield and performance. 
This capability requires no additional software in this system 
because the database for the editor is the same as that used for 
the artwork operations. Modified artwork is output the same 
way as other artwork. 

Artwork Output 

The output subsystem avoids the restriction to Manhattan 
geometries imposed on the rest of the system. Although Man- 
hattan angles were strictly adhered to in the design of a recent 
32-bit processor (Beyers et al., 1981), the use of 45-degree 
angles for low-level cells can save a lot of area in some pro- 
cesses. Therefore; the output subsystem allows output of cells 
that have been designed using other artwork systems. The 
database contains only a hand-drawn abstraction for these cells 
along with a fde name. This file contains the detailed cell 
artwork in a common interchange format. 

Artwork can be output for either reticle pattern generators or 
e-beam exposure systems. Pattern generator output is espe- 
cially fast in this system, because the overlap constraints allow 
hierarchical rectangle fracturing without double exposing any 
edges. 

Performance 

Early performance results are encouraging. A prototype sys- 
tem shows roughly the expected gains in performance. A 32-bit 
ALU and register stack, comprising 92,000 rectangles and 
14,000 devices, is processed in 2.5 minutes on a DEC 2060. The 
processing includes generating four new layers, extracting a 
hierarchical schematic from the artwork, and converting the 
input layers and the generated layers into rectangles. The same 
task takes 60 times as long on a conventional system that 
expands the hierarchy before doing the analysis. The perfor- 
mance is eight times better because repeated cells are looked at 
only once.The rest of the performance gain is due to the smaller 
amount of data handled. 

Furthermore, the cost of checking each cell as soon as it is 
entered is not prohibitive. Even for the largest cell, only 15 
seconds of CPU timeare needed to perform the operations 

'which generate the new layers and extract the schemaic. This 
procedure provides immediate feedback, and keeps errors 
from being propagated throughout a design. 

Other Methodologies 

We have presented a single methodology for developing 
hierarchical circuits. However, the same tools can be used for 
somewhat different methodologies. In particular, the overlap 
restrictions can be modified by specifying different operations 
in the process file. Loosening the overlap constraints will in- 
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evitably decrease the verification performance, because more 
interactions will have to  be checked. 
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